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A Test of the Mean Density Approximation for 
Lennard-Jones Mixtures with Large Size Ratios 1 

3. F. Ely 2 

The mean density approximation for mixture radial distribution functions plays 
a central role in modern corresponding-states theories. This approximation is 
reasonably accurate for systems that do not differ widely in size and energy 
ratios and which are nearly equimolar. As the size ratio increases, however, or if 
one approaches an infinite dilution of one of the components, the 
approximation becomes progressively worse, especially for the small molecule 
pair. In an attempt to better understand and improve this approximation, 
isothermal molecular dynamics simulations have been performed on a series of 
Lennard~ones mixtures. Thermodynamic properties, including the mixture 
radial distribution functions, have been obtained at seven compositions ranging 
from 5 to 95 mol %. In all cases the size ratio was fixed at two and three energy 
ratios were investigated, g=/e~l = 0.5, 1.0, and 1.5. The results of the simulations 
are compared with the mean density approximation and a modification to 
integrals evaluated with the mean density approximation is proposed. 

KEY WORDS: computer simulation; Lennard-Jones mixtures; mean density 
approximation; molecular dynamics. 

1. I N T R O D U C T I O N  

Recently, there has been renewed interest in the development of more 
accurate corresponding states theories for fluid mixtures. Much of the 
research in this area has been focused on the development of local com- 
position models which combine an intuitive microscopic picture of fluid 
structure with a semiempirical equation of state. In this type of model the 

1 Paper presented at the Ninth Symposium on Thermophysical Properties, June 24-27, 1985, 
Boulder, Colorado, U.S.A. 

2 Thermophysics Division, National Bureau of Standards, Boulder, Colorado 80303, U.S.A. 
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local compositions are obtained theoretically from the particle coor- 
dination numbers n;j, which are defined by 

nij(Rii) =4~pXiJo go(r, O; {Pk}, T; {ek,}, {akz}, {#k},...) r= dr 

g~ is the radial distribution function for the 0' pair, which is proportional to 
the probability of finding a molecule of type i a distance r with relative 
orientation O away from a central molecule of type j in the mixture. 
Generally, the radial distribution function depends upon the set of com- 
ponent number densities {Pk}, the temperature T, and the complete set of 
intermolecular potential parameters {~kt}, {~rkl}, {#k},..., for all com- 
ponents in the mixture. Even though this type of approach is intuitively 
pleasing, the ambiguity associated with the value of "cutoff' parameter, R~, 
makes its application in predictive models difficult [1, 2]. 

An alternate approach which avoids this problem was proposed by 
Leland and co-workers [3-5]. In Leland's approach one directly makes an 
approximation which relates the radial distribution function of a pair in a 
mixture to that of a hypothetical pure fluid. This approximate distribution 
function can then be used to derive mixing rules for use in corresponding- 
states models. 

The most successful of these approximations is the mean density 
approximation (MDA) proposed by Mansoori and Leland [3], which for 
spherical molecules, states that 

g~= go(r/ao; k T/eo; p~3) (1) 

where the subscript 0 denotes a pure fluid radial distribution function 
which is to be evaluated at a reduced distance r/ao., reduced temperature 
kT/e o, k is Boltzmann's constant, pff3 is the "mean" reduced density where 

63= Z 2 x,x~a} (2) 
i j 

and xi is the bulk concentration of component i. 
Since at a low density go approaches e x p ( -  fluij}, where uij is the inter- 

molecular potential, Eq. (1) is exact in that limit. Recently, however, it has 
become obvious that Eq. (1) has some shortcomings in the limit of infinite 
dilution [-6] and large size and energy ratios [7]. The latter result led 
Hoheisel and Lucas [7] to propose an empirical modification to pertur- 
bation theory integrals which has been evaluated using the MDA. It is also 
obvious that when the energy parameters for the components are identical, 
the MDA reduces to the van der Waals one-fluid assumption [8], which is 
known to be inaccurate for large size differences. 
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In this communication, the results of molecular dynamics simulations 
are reported for 21 Lennard-Jones mixtures. This study was undertaken to 
provide a base of radial distribution functions for mixtures which could be 
used to test and improve approximations such as the MDA. In the course 
of this study a new approximation for integrals involving mixture radial 
distribution functions was developed and is briefly discussed in Section 4. 

2. DESCRIPTION OF SIMULATIONS 

The systems investigated in this study were chosen to overlap some of 
the results of previous investigators [-7, 9] and to extend the base of 
calculations to the more dilute regimes. The components of the mixtures 
interacted with a pairwise additive Lennard-Jones (12-6) potential 

. o . ( r )  = _ ( o o . / r )  

where i and j denote the components, ~0 denotes the value of the inter- 
molecular potential depth at the minimum rm=21/60-u, and 0-u is the 
collision diameter, uu(0-u)= 0. In these calculations the smaller molecule 
was assigned the potential parameters associated with argon, a~l=  
3.405 x 10-1~ and elffk= 120 K. In all of the calculations presented in 
this report a22/crll = 2, with 822/el l  varying from 0.5 to 1.5. The unlike-pair 
parameters were calculated from the Lorentz-Berthelot rules 

~112 ~- (~11~12) ~ 

and 

O"12 = (0"ll -I- 0"22) 21- 

2.1. Computational Details 

The simulations were performed on a Cyber 205 using a system size of 
864 particles. Hamilton's equations of motion were solved at a constant 
temperature by imposing a Gaussian thermostat of the form proposed by 
Evans and Hoover [-10-12]. The algorithm was a fourth-order Gear 
predictor-corrector with an integration time step of approximately 10 fs. 
The simulations were initiated from a fcc crystal with random assignments 
to the lattice sites. The systems were typically equilibrated a minimum of 
1000 time steps to remove any memory of the initial configuration. The 
intermolecular potential was truncated at 2.5 a u and neighbor lists were 
maintained out to a radius of 2.8 0-0" 

Typically 20000 equilibrium time steps were generated for each state 
point except in the cases where the concentration of one component was 
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less than 10%. In those cases, the simulations were continued to 30000 
time steps. The pair correlation functions were determined by randomly 
sampling the system at an approximate frequency of twice every hundred 
time steps. The step size of the resulting histograms was chosen to be 
0.025 a~. Long-range corrections to the thermodynamic pressure and 
energy were added to the simulation results by assuming that the dis- 
tribution functions were unity beyond 2.5 a,y. 

The overall accuracy of the simulations is a strong function of the 
system size and concentration. In all cases the total energy of the system 
with the thermostat off was conserved to within 0.1% per 10,000 time 
steps. It is estimated that the accuracy of the radial distribution functions is 
better than 0.5 % except for the like tike distribution functions for the cases 
where the concentrations were less than 10 % of that component. In the lat- 
ter case uncertainties are of the order of 2 %. 

3. RESULTS AND COMPARISONS 

The results of the simulations are summarized in Table I, which gives 
the compositions and energy ratios studied, in addition to the relevant 
thermodynamic state data. Figure 1 shows the excess internal energy for 
the systems studied relative to the pure Lennard-Jones values obtained 
from the Nicolas equation of state [-13]. Three of the systems studied 
(1322/~11 = 1, X 1 =0.25, 0.50, and 0.75) were chosen to be identical to those 
investigated by Gupta [9]. Differences in the configurational energy and 
distribution functions obtained in this study and those reported by Gupta 
are within the combined uncertainty of the simulations. 

The primary purpose of this study was to provide a more detailed 
comparison of the mean density approximation given in Eq. (1) with 
accurate simulation results. Since this approximation requires a knowledge 
of the pure fluid distribution function at many state conditions, it was 
decided to use the parameterization of the dense pure Lennard-Jones fluid 
radial distribution function developed by Goldman [-14]. The stated 
accuracy of this approximation is an rms deviation of 0.034 in the tem- 
perature range of 0.5 ~< T* ~< 5.0 and 0.35 ~< p* ~< 1.10. Comparisons of a 
few simulated pure fluid results and the results of Goldman's equation 
agreed with this estimate. 

Figure 2 compares the simulated and MDA calculated 1-1 dis- 
tribution functions at three compositions with 1322//311 = 1. This figure 
demonstrates the general result that the MDA underestimates the height of 
the 1-1 first-neighbor peak and, for compositions less than xl = 0.5, does 
not represent the "solvation" first-neighbor peak at r*= alJcr H. Figure 3 
shows similar results for the 1-2 distribution function. In this case the 
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Table I. Summary of Simulation Results for Mixtures of 
864 Lennard-Jones Particles a 

385 

N 1 ~22//311 p* p* T* U* 

821 0.5 0.447 0.5800 1.000 --4.766 
1.0 0.483 0.5980 1.000 - 5.340 
1.5 0.512 0.6130 1.000 - 5.841 

778 0.5 0.422 0.4660 1.000 -- 4.374 
1.0 0.512 0.4939 1.000 - 5.381 
1.5 0.504 0.5080 1.000 - 6.210 

648 0.5 0.521 0.3030 1.000 - 3.731 
1.0 0.500 0.3190 1.000 - 5.416 
1.5 0.660 0.3380 1.000 - 7.108 

432 0.5 0.520 0.1900 1.000 - 3.098 
1.0 0.488 0.2000 1.000 - 5.573 
1.5 0.527 0.2100 1.000 -- 8.108 

216 0.5 0.510 0.1386 1.000 -2.728 
1.0 0.507 0.1466 1.000 - 5.849 
1.5 0.497 0.1520 1.000 - 9.090 

86 0.5 0.344 0.1100 1.000 - 2.459 
1.0 0.520 0.1265 1.000 - 6.040 
1.5 0.440 0.1300 1.000 - 9.685 

43 0.5 0.518 0.1150 1.000 -2.538 
1.0 0.623 0.1238 1.000 - 6.184 
1.5 0.345 0.1280 1.000 -- 10.523 

a p* = pa~l/e11, p* = pa~l, T* = k T/eH, and U* = U j N e H .  

he igh t  of  the  f i r s t -ne ighbor  p e a k  is well  r e p r e s e n t e d  at  all c o m p o s i t i o n s ,  

a l t h o u g h  the  s e c o n d - n e i g h b o r  p e a k  is i nco r r ec t l y  r e p r e s e n t e d  at  all c o m -  

pos i t ions .  F i g u r e  4 shows  the  2 - 2  d i s t r i b u t i o n  funct ions .  In  this case  the  

f i r s t -ne ighbor  peaks  a re  wel l  r e p r e s e n t e d  b u t  the  s o l v a t i o n  peak  is 

i nco r r ec t l y  p l a c e d  by the  M D A  for  x l / >  0.5. 

In  Fig.  5 the  effect of  the  ene rgy  ra t io  o n  the  2 - 2  d i s t r i b u t i o n  func t i on  

is s h o w n  at  a f ixed c o m p o s i t i o n  o f  Xl = 0.5. In  this  case  the  M D A  cor rec t ly  

t racks  the  he igh t  of  the  f i r s t - n e i g h b o r  peak .  A l t h o u g h  n o t  shown ,  the  M D A  

cons i s t en t ly  u n d e r e s t i m a t e s  the  f i r s t - ne ighbo r  p e a k  he igh t  for  the  1-1 dis- 

t r ibu t ion .  F ina l ly ,  Fig.  6 shows  the  a v e r a g e  d e v i a t i o n  b e t w e e n  the  m e a n  

dens i ty  a p p r o x i m a t i o n  a n d  the  s i m u l a t i o n  resul ts  for  all 20 s ta te  po in t s  

r e p o r t e d  here.  Aga in ,  the  f i r s t - ne ighbo r  p e a k  in the  1-1 d i s t r i b u t i o n  

func t i on  is cons i s t en t ly  u n d e r e s t i m a t e d .  
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Fig. 1. Dimensionless excess energy for the Lennard-Jones 
mixtures simulated in this study. The points indicate the 
simulation results and the lines are included only to help 
guide the eye. 

One can conclude from these results that the MDA provides a 
reasonable estimate of distribution functions in mixtures. Its two greatest 
errors are the height of the first-neighbor peak for the small molecule pair 
and its inability to mimic the packing effects (e.g., the solvation first- 
neighbor peaks) associated with a system of molecules of different sizes. 
Since the latter effect is apparent only at relatively large intermolecular 
separations, the effect on the thermodynamic properties should be small. 
The first effect, however, can have a substantial impact on the calculation 
of properties and warrants some correction. 

4. M O D I F I C A T I O N  TO THE M E A N  D E N S I T Y  A P P R O X I M A T I O N  

Hoheisel and Lucas (HL) [-7] have pointed out that it is possible to 
improve the accuracy of the integrals of the form 

J i j  (n) = g i j r  n -  2 d r  
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Fig. 2. Comparison of the mean density approximation 
(solid line) and simulation results for the 1-1 radial dis- 
tribution function at three compositions. In all cases e22/~:1 = 1 
and 0 2 2 / a l l  = 2. 
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Fig. 3. Comparison of the mean density approximation 
(solid line) and simulation results for the 1-2 radial dis- 
tribution function. The compositions and potential parameter 
ratios are identical to those in Fig. 2. 
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by multiplying the MDA results by an empirical factor which they 
correlated from their simulation studies. Examination of their results shows 
(as the results obtained here) that the Jo (") obtained from the MDA are 
low for the small molecule pair and generally slightly high for the large 
pair. 

As an alternative to the HL procedure, we propose here a scaling of 
the J integrals based on the first-neighbor peak heights for soft-sphere 
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Fig. 4. Comparison of the mean density approximation 
(solid line) and simulation results for the 2-2 radial dis- 
tribution functions. Compositions and potential 
parameters are identical to those in Fig. 2. 
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mixtures. In particular, we define a modified mean density approximation 
(MMDA) as 

gij(r) = S~ go(r/a o. ; k T/e~, pff3) (3) 

where S~ is given by 

Su= g~(rx/d,j; {Pk}, {dkz})/g~'(rx/d; p~3) (4) 
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Fig. 5. Comparison of the mean density 
approximation (solid line) and simulation results 
for the 2-2 radial distribution function at three 
energy ratios: 1.5, 1.0, and 0.5. In all cases the 
composition was x 1 = 0.5 and a22/~rll = 2. 
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The soft-sphere distribution functions are obtained from the Weeks- 
Chandler-Anderson [ 15 ] soft-sphere potential 

u~ = u~L(r) + gu (r <~ rm) 

and the approximation that the soft-sphere background correlation 
functions may be calculated from the relation 

Yij(r)=exp(_fluu) . s  . go (r, 
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Fig. 6. Average of the differences between the mean density 
approximation and all 21 simulation results. In the cases 
studied here, the MDA consistently underestimates the first- 
neighbor peak high for the 1-1 distribution function. 
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Table II. Comparison of Predicted and Simulated J Integrals for 
Lennard-Jones Mixtures with ~22/al l  = 2 a 

j6 j12 

ezz/e11 Pair MD HL MMDA MDA MD HL MMDA MDA 

1.0 11 0.688 0.687 0.701 0.632 0.530 0.542 0.583 0.527 
12 0.666 0.687 0.686 0.632 0.548 0.549 0.569 0.527 
22 0.670 0.673 0.683 0.632 0.613 0.597 0.570 0.527 

1.5 11 0.703 0.691 0.714 0.632 0.545 0.548 0.595 0.527 
12 0.662 0.675 0.677 0.619 0.518 0.512 0.533 0.487 
22 0.641 0.648 0.654 0.609 0.524 0.514 0.488 0.454 

3.0 11 0 .712 0.701 0.739 0.632 0.573 0.565 0.616 0.527 
12 0.661 0.651 0.660 0.594 0.481 0.450 0.472 0.425 
22 0.597 0.602 0.600 0.566 0.401 0.398 0.373 0.351 

5.0 11 0.713 0.713 0.752 0.632 0.582 0.584 0.627 0.527 
12 0.659 0.637 0.651 0.581 0.454 0.413 0.436 0.389 
22 0.571 0.578 0.570 0.543 0.338 0.336 0.312 0.297 

~MD, molecular dynamics simulations [7]; HL, calculated by Hoheisel and Lucas [7]; 
MMDA, modified mean density approximation presented in this work; MDA, original mean 
density approximation. 

In these equat ions  gIjS is a ha rd-sphere  d i s t r ibu t ion  funct ion with effective u 
diameters  do . ,  and r x denotes  the pos i t ion  of the m a x i m u m  of the soft- 
sphere d i s t r ibu t ion  function,  g~S is a rad ia l  d i s t r ibu t ion  funct ion for a 
system of  pure  soft spheres eva lua ted  at  a mean  density.  

In  o rde r  to test this app rox ima t ion ,  Pe rcus -Yevick  hard-sphere  
mixture  d i s t r ibu t ion  funct ions were eva lua ted  by  Pe r ram ' s  m e t h o d  [16 ]  
and t empera tu re -dependen t  effective ha rd-sphere  d iameters  were ob ta ined  
from the prescr ip t ion  of Barker  and  Hende r son  [17] .  Table  II  compares  
the results of the calcula t ions  with those r epor t ed  by H L  for a size ra t io  of 
two. Genera l ly  the results are in the r ight  d i rec t ion  bu t  are not  as accurate  
as the cor re la t ion  presented  by HL.  This could  be improved  by  mak ing  a 
more  sophis t ica ted  ca lcula t ion  of the effective ha rd-sphere  d iameters  in 
Eq. (4). The advan tage  of this app rox ima t ion ,  however ,  is that  it can be 
used in the deve lopmen t  of conformal  so lu t ion  mixing rules. 

5. S U M M A R Y  

We have presented  the results of  some pre l iminary  molecu la r  
dynamics  s imula t ions  for L e n n a r d - J o n e s  mixtures  with a size ra t io  of two. 
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The mean  densi ty  a p p r o x i m a t i o n ,  a l though  realistic,  fails to represent  the 

size effects in mixture  d i s t r ibu t ion  functions,  especial ly for the small  
molecule  pair .  A cor rec t ion  to integrals  eva lua ted  with the M D A  has been 

p r o p o s e d  which is an  i m p r o v e m e n t  over  the uncor rec ted  M D A .  F u t u r e  
work  will i nco rpo ra t e  this a p p r o x i m a t i o n  in the deve lopmen t  of  conformal  

so lu t ion  mixing rules. 
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